突然終わるかもしれないブログ

確率や統計の内容について記事を書く予定です.

ベクトル束に同伴する主ファイバー束の位相

をn次元可微分多様体 をr次元ベクトル束 ( はファイバー)とし,

とする.また を局所座標近傍系, に対し とする. を局所的切断とする.つまり 局所標構場とするとき, ( は標準基底)とする.ここで

とすると,全単射となる.

Proposition1
の部分集合 が開集合であることを,

と定義する.開集合全体を とすると, は開集合系の公理を満たす.

証明
任意のαに対して

より とすると,

より とすると

よって .[証明終]

Propositon2
この位相で は連続である.

証明
Mの任意の開集合Vと任意のαに対して

.したがって連続.[証明終]

Propositon3
この位相で は同相である.

証明
位相の定義より明らか.[証明終]

Propositon4
ハウスドルフ空間である.

証明
の相異なる二点 をとる. のときは多様体ハウスドルフ空間であることから,開集合で分離される.のときは が同相で,ハウスドルフ空間であるから開集合で分離される.[証明終]

Propositon5
のとき,

微分可能である.

証明
ベクトル束の変換関数が微分可能であることから従う.[証明終]


以上のPropositionより,ベクトル束Eに同伴するファイバー束Pは 多様体である.

可測写像が与えられたもとでの条件付き期待値

Definition

を確率空間,を可測空間とする. を可測写像 を実確率変数とし可積分とする.このとき


とすると, は上の符号付き測度となる.また (像測度) とすると, は に関して絶対連続となる.
よってRadon-Nykodim 導関数が存在し,それを と表す.これをY = y が与えられれたときのX の
条件付き期待値(conditional expectation of X given Y = y) という.

Proposition 1 とすると, αは可測で

が成立する.

証明 任意の に対して, となるBが存在する.このとき変数変換と,定義より

<証明終>

Proposition 2
Proposition 1.2. 可測写像を与えたもとでの条件付き期待値の性質として以下が成立する.
(1)
(2) を可積分な実確率変数,に対して
(3) ならば
(4) 可測写像を与えたもとでの条件付き期待値の単調収束定理が成立する.
(5) 可測写像を与えたもとでの条件付き期待値のFatouの補題が成立する.
(6) 可測写像を与えたもとでの条件付き期待値のルベーグ収束定理が成立する.
(7) 可測写像を与えたもとでの条件付き期待値のJensenの不等式が成立する.
(8) ,は独立とする.このとき
(9) を有界な可測関数, を実確率変数で可積分とする.このとき,

証明 Proposition1 や普通の条件付き期待値の性質の証明と同様. <証明終>

class DL

からしゅれに右連続非負値submartingaleはclass DLであるという主張があって,同様に右連続martingaleもclass DLとなることが言える.

証明
a>0を固定し,となるstopping timeの族をとする.定義よりが一様可積分であることを示せばよい.Jensenの不等式よりはsubmartingale. OSTより

可測なので,λ>0に対し

またチェビシェフの不等式より

よって積分の絶対連続性より

これよりは一様可積分.(証明終)



Xが発展的可測のとき可測だけど,からしゅれだとadaptedしか仮定していないのに大丈夫か?という疑問が起きた.けれど,右連続性からXはmeasurableで,さらにadaptedと右連続性から発展的可測がでるから,結局発展的可測を仮定しているのと同じことなので,問題なかった.というかもっと早くこの疑問を持つべきだった.あまり発展的可測は強い条件じゃないのかもしれない.

可分距離空間上のtightでない確率測度の例(つづき)

可分距離空間上のtightでない確率測度の例 ルベーグ外測度1,ルベーグ内測度0の集合の存在を認めたのですが,[0,1]の部分集合A,Bでdisjointかつともにルベーグ外測度が1であるようなルベーグ非可測集合の存在を教えていただきました.

詳しくは

ルベーグ非可測集合の例

を見ていただきたいと思います.

共変微分と平行移動

多様体Mの線形接続, (IはRの開区間)とする. を接空間 からへの写像で, に沿って平行移動したものとする.このとき に沿う共変微分

と表されることを示せ.という問題です.本によっては(野水,甘利など)平行移動から,上の式で曲線に沿う共変微分を定義しているみたいです.


[証明]

と置くと, は線形同型写像であるから の基底である. とすると (初期値)であるから

一方

よって証明が終わる.

可分距離空間上のtightでない確率測度の例

完備可分距離空間上では確率測度の族 がtightであることと,相対コンパクトであることは同値.けれども可分距離空間上の確率測度でtightでないものが存在する(よって相対コンパクトであるがtightでない例になっている).

この例はBillingsleyの Convergence of Probability Measures の章末問題として載っていた例です.

Convergence of Probability Measures (Wiley Series in Probability and Statistics)Convergence of Probability Measures (Wiley Series in Probability and Statistics)
(1999/07/30)
Patrick Billingsley

商品詳細を見る


まず [0,1] の部分集合 S をルベーグ外測度が1,ルベーグ内測度が0であるようなルベーグ非可測集合とする(存在は認める).この集合 S に [0,1] の相対位相を入れると,可分距離空間となる([0,1]の開基の元とSの共通部分から(あれば)一点とって集めた集合Aは可算集合でSで稠密).またルベーグ外測度 を S に制限したものを とおく.Pは外測度の性質を満たし,カラテオドリの意味で可測な集合全体 の上の測度となる.また明らかに,任意のルベーグ可測集合 E に対して は P可測集合である.さらにSのルベーグ外測度は1なので,PはSの上の確率測度となる.


ここで S の任意のコンパクト集合 K に対して P(K)=0 であることを示す(これよりPはtightでない S の上の確率測度となる).包含写像 は連続.よって i(K) は [0,1] のコンパクト集合.よって K は [0,1] のコンパクト集合.ここで 内測度の定義から

よって から .以上より P は tight ではない.



Billingsleyはさらに可分距離空間上の確率測度の族で,相対コンパクトかつ各確率測度はtightだが,族はtightでないものも構成していて,証明できたらまたブログに書こうと思います.

しかし自分でもいろいろ考えてみたけど,ルベーグ非可測集合とは・・・